Distributed predictive control with minimization of mutual disturbances

نویسندگان

  • Paul A. Trodden
  • Jose Maria Maestre
چکیده

In this paper, a distributed model predictive control scheme is proposed for linear, time-invariant dynamically coupled systems. Uniquely, controllers optimize state and input constraint sets, and exchange information about these—rather than planned state and control trajectories—in order to coordinate actions and reduce the effects of the mutual disturbances induced via dynamic coupling. Mutual disturbance rejection is by means of the tube-based model predictive control approach, with tubes optimized and terminal sets reconfigured on-line in response to the changing disturbance sets. Feasibility and exponential stability are guaranteed under provided sufficient conditions on non-increase of the constraint set parameters.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Trajectory Free Model Predictive Control of Biped Robots with Adaptive Gait Length

This paper employs nonlinear disturbance observer (NDO) for robust trajectory-free Nonlinear Model Predictive Control (NMPC) of biped robots. The NDO is used to reject the additive disturbances caused by parameter uncertainties, unmodeled dynamics, joints friction, and external slow-varying forces acting on the biped robots. In contrary to the slow-varying disturbances, handling sudden pushing ...

متن کامل

Model Predictive Control of Distributed Energy Resources with Predictive Set-Points for Grid-Connected Operation

This paper proposes an MPC - based (model predictive control) scheme to control active and reactive powers of DERs (distributed energy resources) in a grid - connected mode (either through a bus with its associated loads as a PCC (point of common coupling) or an MG (micro - grid)). DER may be a DG (distributed generation) or an ESS (energy storage system). In the proposed scheme, the set - poin...

متن کامل

Nested Distributed Model Predictive Control

We propose a distributed model predictive control approach for linear time-invariant systems coupled via dynamics. The proposed approach uses the tube MPC concept for robustness to handle the disturbances induced by mutual interactions between subsystems; however, the main novelty here is to replace the conventional linear disturbance rejection controller with a second MPC controller, as is don...

متن کامل

Rejection of the Feed-Flow Disturbances in a Multi-Component Distillation Column Using a Multiple Neural Network Model-Predictive Controller

This article deals with the issues associated with developing a new design methodology for the nonlinear model-predictive control (MPC) of a chemical plant. A combination of multiple neural networks is selected and used to model a nonlinear multi-input multi-output (MIMO) process with time delays.  An optimization procedure for a neural MPC algorithm based on this model is then developed. T...

متن کامل

Designing a new robust control for virtual inertia control in the microgrid with regard to virtual damping

Background and Objectives: Virtual inertia control, as a component of a virtual synchronous generator, is used for the implementation of synchronous generator behaviour in microgrids. In microgrids that include high-capacity distributed generation resources, in addition to virtual inertia, virtual damping can also lead to improvement of frequency stability of the microgrid. The purpose of the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Automatica

دوره 77  شماره 

صفحات  -

تاریخ انتشار 2017